App-Based Mobile Devices in the Occupational Therapy Process

In recent years, AMD use has become the most widespread way of accessing the Internet (Statista, 2016b), and it therefore presents an opportunity for promoting health and wellness management beyond clinical environments. AMDs provide a source for health monitoring that is easily accessible and cost effective. In addition, AMDs provide instant feedback and information without the need to wait for an appointment with a provider.

However, the ease of access and everyday use of AMDs by occupational therapy practitioners and clients may interfere with practitioners’ judgment and reasoning, resulting in improper use of the devices during the occupational therapy process. AMDs can be used during the occupational therapy process as a tool for evaluation or intervention to facilitate a client’s occupational performance. The purpose of this article is to inform occupational therapists of important factors when deciding to use AMDs as evaluation tools or as assistive technology for client performance.

SELECTING AMDS
The demands of using an AMD can be analyzed following the items in the Occupational Therapy Practice Framework: Domain and Process, 3rd Edition (Framework; American Occupational Therapy Association [AOTA], 2014) table for Activity and Occupational Demands: relevance and importance to the client; objects used and their properties, space, and social demands; sequencing and timing; required performance skills; and required body functions and structures. The activity analysis of AMDs is summarized in Table 1 on p. CE-3.

The Human Activity Assistive Technology (HAAT) is the most applicable model when considering AMDs in occupational therapy practice. The HAAT model includes four components: the activity, the person, the assistive technology, and the contexts (Cook & Polgar, 2015).

Activity
The first step in implementing an AMD with a client is to consider what occupations the client wants to perform and which devices and app may support this performance. A thorough evaluation of the client is necessary when considering AMDs throughout the occupational therapy process (Gentry, Kriner, Sima, McDonough, & Wehman, 2015; Gentry, Lau, Molinelli, Fallen, & Kriner, 2012). As part of the evaluation process described in the Framework, the occupational profile is completed first, even when AMDs are being considered, to be certain of the occupations in which the client engages. Completing the occupational profile is congruent with the HAAT model, which seeks to identify the activities the person

Kelly Erickson, PhD, OTR/L
Associate Professor, The College of St. Scholastica
Duluth, Minnesota

This CE article was developed in collaboration with AOTA’s Technology Special Interest Section.

ABSTRACT
Clients have widespread access to application (app)-based mobile devices (AMDs), such as smartphones, tablets, and e-readers, and occupational therapy practitioners are reporting the benefits of using these devices to improve client performance. AMDs are applicable within occupational therapy given the extensive use of assistive technology in the profession. Research on AMD effectiveness is in the early stages because of the rapid development of this technology. Practitioners must be aware of maintaining client-centered practice and the need to consider their own competencies and professional obligations when using AMDs in the occupational therapy process. Although AMDs appear to be common because of their ease of access, practitioners must consider the complexities involved in their operating systems and functionality when implementing these devices therapeutically. This article discusses client factors and contextual considerations when using AMDs and provides suggestions for how occupational therapy practitioners may develop the skills needed to work with these emerging technologies.

LEARNING OBJECTIVES
After reading this article, you should be able to:
1. Differentiate occupational therapy applications of AMDs from personal device use
2. Identify the need to enhance consumer health literacy as it pertains to AMD technology
3. Identify outcome assessments used to evaluate AMD technology needs of clients
4. Discuss evidence supporting the use of AMDs
5. Identify strategies to integrate technology into practice

INTRODUCTION
Application (app)-based mobile devices (AMDs) and the apps used within those devices have grown exponentially in the last 10 years (Statista, 2016a). AMDs include smartphones, tablets, e-readers, and handheld computers, which are able to operate apps from the operating system. The term AMD, as used here, includes the mobile device as well as the apps that are downloaded to the device.
multitasking, which may actually decrease occupational perfor-

sations? How will using the AMD to address client factors affect

AMD facilitate the client's satisfaction and performance in occu-

pations? Is the client motivated to use an AMD?

aligning an app with the specific occupational therapy
domain that it addresses is suggested as routine practice when
considering AMDs. Majeski, Olson, and Hartmann (2011) iden-
tified various AMDs for high school student transition and pro-
vided a table that applies specific apps to specific occupational
therapy domains. Operating systems of the client’s own device
or of a new device should be considered to determine compat-
ibilities with client abilities, values, needs, and goals. Will the
AMD facilitate the client’s satisfaction and performance in occup-
pations? How will using the AMD to address client factors affect
the client’s occupations? Occupational therapy practitioners
should also be aware of ways that a client’s AMD use may
negatively affect their performance patterns, such as electronic
multitasking, which may actually decrease occupational perfor-
man ce productivity (Hartmann, Nadeau, & Sanders, 2011).

The Person
To operate the assistive technology device, the person requires
physical, cognitive, and emotional skills (Cook & Polgar, 2015).
These should also be assessed as part of the analysis of occupa-
tional performance, the second step in the occupational therapy
evaluation process. Client factors, such as movement-related
functions, include motor and sensory skills; and mental func-
tions include emotional, cognitive, and perceptual skills. Access-
ing the device should be considered for each client and may
involve assessing specific performance skills and client factors,
such as: Does the client have enough strength and coordination
to turn on the device? Does the client have visual skills for read-
ing the screen or auditory skills for voice over speech? Does the
client understand the virtual environment and the relationship
to space and time when using an AMD? Is the client motivated
to use an AMD?

The challenges that can occur with accessing AMDs include
coordination skills to turn the device on; cognitive chal-
lenges related to navigating functions and following pop-up
instructions; and physical challenges related to seeing screen
animations and hearing audio interactions while using apps.
Occupational therapy practitioners should become familiar with
the guided access features available on devices, which can make
the device and apps accessible to accommodate various body
functions and structures. Specific considerations for AMDs in
areas of accessibility related to motor skills, visual and hearing
adaptations, cognitive assistance, and communication support
are available in more detail from Burgstahler, Comden, Lee,
Arnold, and Brown (2011); and Cook and Polgar (2015).

The most comprehensive assessment available for deter-
mining client factors, environments where technology is used,
and technology device functions and features is the Matching
Person and Technology Assessment Process (Scherer & Craddock,
2002). Other technology assessments, including the
Quebec User Evaluation of Satisfaction With Assistive Technol-
ogy (QUEST; Demers, Weiss-Lambrout, & Ska, 2000) and the
Functional Assessment Tool for Cognitive Assistive Technology
(FATCAT), can determine specific client needs (Gentry, Wall-
lace, Kvarfordt, & Bodisch Lynch, 2010). The QUEST assesses
a client's satisfaction with using a specific device and focuses on
the operability of the device and support services provided for
the device. Psychometric properties are adequate for reliability
and validity of the QUEST, although further research is sug-
gested (Demers, Weiss-Lambrout, & Ska, 2002).

The FATCAT is particularly useful in matching a client with
a cognitive impairment to everyday technology; this assessment
has no reported psychometric data. The data gathered in the
evaluation process, including the occupational profile and the
analysis of occupational performance, should be synthesized
with the technology-specific assessment findings to identify
which occupations can best be supported with an AMD.

Assistive Technology Device
AMDs are considered mainstream technology in that they have
been designed for a wide range of individuals (Cook & Polgar,
2015). They are also considered high technology because the
devices are advanced in design, require capital investment,
and may require advanced training (Rakoski & Ferguson, 2013).
These devices also present significant complexity because they
have multiple tools to assist in a variety of tasks, including
schedulers, memory aids, calculators, maps, financial trackers,
and word processing systems.

The HAAT model recognizes the AMD as the interface that
links the person to the context where the activity is being per-
formed (Cook & Polgar, 2015). AMDs can be used in four ways
for interventions, as described within occupational therapy and
according to the Framework.

1. Occupations
Using the AMD for processing sent and received information
can be part of communication management, as categorized
in the instrumental activity of daily living aspect of the
domain.

2. Activities
AMDs may also be used to target performance patterns or
skills through activities that are meaningful for the client. If
an AMD is an activity that a client already enjoys and uses
regularly as part of their daily routine, it may be a useful tool
to address specific performance skills or to support perfor-
man ce patterns. In addition, AMDs have been identified as
a therapeutic tool to target performance patterns and skills,
such as upper extremity coordination, gross motor and sen-
sory development, fine motor skills, visual perception skills, sequencing, communication and social skills, scheduling, and organization (Aftel, Freeman, Lynn, & Mercer, 2011; Hoesterey & Chappelle, 2012).

3. Preparatory Method
AMDs may be used as assistive technology as a preparatory method for occupational performance. An example of this is sequencing the steps of a morning activity of daily living routine with the CanPlan app or using the text-to-speech accessibility on mobile devices for social participation. AMDs can provide unlimited occupation support in areas such as financial management, shopping assistance, rest and sleep, leisure participation, and meal preparation.

4. Preparatory Task
AMDs can be used as an intervention method to target specific client factors through preparatory tasks. Examples include remediating fine motor control through the Dexteria app or identifying a client’s level of alertness through the Zones of Regulation app. Apps used as preparatory tasks for behavior management support are identified by Aftel and colleagues (2011).

The AMD capability as an occupation, as assistive technology to support occupational performance, and as an intervention method to facilitate skill development brings about both opportunities and challenges. Therefore, the decision-making process

Table 1: Selecting App-Based Mobile Devices

<table>
<thead>
<tr>
<th>Considering App-Based Mobile Devices: Operability and Match With Client Abilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>What occupation(s) will the device or app support? Does the device or app align with the client’s values and occupational needs?</td>
</tr>
<tr>
<td>Objects used and their properties</td>
</tr>
<tr>
<td>• System requirements—What is the operating system of the client’s device? Is the system updated? What operating system and version are needed to run the selected app?</td>
</tr>
<tr>
<td>• When was the device or app last updated?</td>
</tr>
<tr>
<td>• Device operates consistently and apps install, launch, and run consistently on the target device(s) and operating system(s).</td>
</tr>
<tr>
<td>• Device and apps consistently connect to any and all peripheral or accessory devices (e.g., Bluetooth, Wi-Fi).</td>
</tr>
<tr>
<td>• Contact information is available for device manufacturer or app publisher for technical support.</td>
</tr>
<tr>
<td>How many steps are required to operate device or app?</td>
</tr>
<tr>
<td>What performance skills and client factors are needed to operate the device or app?</td>
</tr>
</tbody>
</table>

Selecting Apps: App Content and Evidence Supporting Effectiveness

| Content of apps written and presented appropriately for intended audience |
| • Identify the target audience. |
| • Health literacy—Ensure the content is designed and written in a way that is appropriate for the target audience (consider age, educational background, status as health care professional or consumer/caregiver). |
| • Who is funding the app (e.g., governmental agency, pharmaceutical company, individual)? |
| • Specify how the app fits within the scope of practice for occupational therapy. |

Evidence Supporting Effectiveness

| Is content based on one or more credible information sources? |
| Does the app reflect up-to-date information? Are the source(s) and date(s) of publication/modification cited? |
| What evidence is available that evaluates the effectiveness of the app’s intended purpose or the app’s ability to meet occupational therapy outcomes? |

Confidentiality

| What is the privacy policy regarding confidential information? |
| Where and how long is the data from the app retained? |
| Who will use the data? |

Security

| How does the app address potential for malicious code or software (e.g., viruses, spyware)? |
| Does the app require the user to create a login and use a password? |
| Does personal data that is collected, stored, and transmitted use encryption? |
when implementing AMDs in the occupational therapy process is complex. Clinical reasoning of the occupational therapist, using activity analysis and considering occupational demands is needed when matching such a high-tech device to a client’s needs, and when training a client to use the device. As with the selection of all interventions, it is important for the therapist to select the best AMD based on the client’s needs, as opposed to the operating system within an AMD. For example, the occupational therapist may use the tracking and data output provided by an app as a way to document measurable progress. This is a benefit of using the app; however, the primary consideration must be matching the AMD to a client’s abilities, values, and needs. Allowing the device to guide the occupational therapist’s decision making takes the focus away from the client, which can delay progress in the client meeting their goals.

**Activity Analysis of AMDs**

Occupational therapists should evaluate the operability of the AMD for ease of use and performance consistency, including turning the device on and off, launching the app, Wi-Fi requirements, accessory devices needed, and activity and occupational demands of the device and apps. Complicated operating systems that require support from other individuals may negatively affect the client, as found in a study using computer-based assistive technology (Lindqvist & Borell, 2010). The ability of the device and app to connect to other systems, such as Bluetooth or Wi-Fi, should also be considered, if these systems will be needed for client success. Contact information for technical support should be readily identifiable for the device and the app, and this information should be provided to the client for ongoing support beyond occupational therapy.

Customization and grading of the AMD is necessary to successfully match the device to the client (Carabeo, Dalida, Padilla, & Rodrigo, 2014; Gentry et al., 2012, 2015; Kizony, Zeilig, Dudkiewicz, Schejter-Margalit, & Rand, 2016; Rand, Schejter-Margalit, Dudkiewicz, Kizony, & Zeilig, 2013). Often, customization and grading may need to happen through the accessibility features of the AMD or by adding external items to the device, such as a case, adaptive stylus, or hands-free stand. Occupational therapy practitioners must be able to consider adaptive techniques for the AMD itself to meet the client’s abilities.

**App Content Analysis**

The target audience for the app should be determined based on age and educational background of the information provided in the app, with the app matching the abilities of the client. Information presented in the app should be at a health literacy level that is appropriate for the target audience. The development and design of the content in the app should also be reviewed: Who designed the app? How often is the app reviewed and updated by the developers? The developer of the app, the version of the app, and the date the app has been updated are posted on its webpage. If an app has not been updated for more than a year, it will likely not function well on the device or will no longer be supported on current operating systems.

Mobile apps designed with the collaboration of rehabilitation practitioners should be considered first as tools for evaluation and methods of intervention. The app is more likely to be designed to address occupational performance in areas relevant to clients when occupational therapy practitioners are involved in the design. Examples of apps that have been developed with occupational therapist collaboration include Shelby’s Quest, Dexteria, Abilipad, and StepByStep Pro Sequencing and Assessment for Adults and Kids with Special Needs.

The Aid for Decision Making in Occupational Choice (ADOC) is an app that has undergone several studies in Japan and has been found to be a reliable and valid measure for collaborative goal setting with clients (Tomori, Saito et al., 2012; Tomori, Uezu et al., 2013). The Canadian Occupational Performance Measure (COPM; Law et al., 2014) was created as a web-app form for added convenience in administering this common occupation-based assessment, which operates through a second app, Google Authenticator. Psychometric properties of the web-app version of the COPM are not yet available. The app version of the Montreal Cognitive Assessment (MoCA) is undergoing beta testing to provide this cognitive screen through a mobile device.

**Evidence Supporting Use**

Extensive literature exists about using assistive technology in rehabilitation and should be used to guide the current use of AMDs, even though the available evidence that is specific to the effectiveness of AMD is limited (see Erickson [2015] for a complete review and references). Although literature relating to assistive technology in general is useful in providing an evidence base for AMD use in occupational therapy practice, evidence regarding AMD use requires not only consideration of effectiveness but also a review of the evidence supporting the app’s content.

The contents of the app should be reviewed for truth, objectivity, and fairness, with scientific evidence supporting the information whenever possible. Apps used for health management that do not have expert involvement in producing the content may result in inaccurate information or recommendations that are not based on current best practice (Buijink, Visser, & Marshall, 2013). Ideally, the app content should be peer reviewed by a reputable group of providers. Apps should only be recommended after their content has been thoroughly reviewed, especially when clients are making decisions about their health care based on information from the app. Even when using a mobile version of an evaluation tool, such as the COPM, ADOC, or MoCA, the psychometric properties of the evaluation must be considered to ensure accuracy in measuring the specified factors and in scoring the assessment. The U.S. Food and Drug Administration (FDA; 2015) suggests that viewing scans, such
as an X-ray, on a mobile device may result in image distortion based on the screen size or image contrast. One recent app used to manage rheumatic diseases was recently recalled because of inaccurate scoring (Buijink et al., 2013). Practitioners should consider how these examples may apply to occupational therapy.

Limited research on the effectiveness of using AMD in occupational therapy practice does not suggest that AMDs are not effective; rather, the research is lacking because of the rapid emergence of AMDs, with the research simply not yet available. Occupational therapy practitioners rely on client preferences as part of evidence-based practice. Overwhelmingly, studies assessing fine motor control found that participants identified the AMD as engaging and motivating (Carabeo et al., 2014; Kizony et al., 2016; Lawson, Tang, & Feng, 2017; Rand et al., 2013), which suggests the potential for using AMDs in occupational therapy practice to get a client participating.

Several pilot studies and case studies have assessed various apps as part of occupational therapy interventions, and most show positive short-term improvement in performance, although not all found statistical significance in their results. One systematic review and one randomized control trial have also been completed. These studies focus primarily on AMD as assistive technology for compensation of cognitive deficits and as intervention methods to improve fine motor skills for stroke rehabilitation.

Apps have been used as a compensatory strategy for cognitive deficits, including using AMDs as vocational supports for individuals with autism, with studies finding a decreased need for job coach support when iPod Touch was used to support job task performance (Gentry et al., 2012, 2015). Several studies have assessed using apps to improve fine motor dexterity and hand strength for stroke rehabilitation and found positive short-term improvement in performance when using AMDs (Carabeo et al., 2014; Kizony et al., 2016; Lawson et al., 2017; Rand et al., 2013).

Confidentiality and Security
Privacy and security include determining how the individual’s data is stored on the device, who can access that data, and how long the data is stored. Requiring a log-in and adding a level of security to the device and/or app, but the client’s ability to use the device and/or app must also be considered. Many apps are available free of charge if the user can manage the many pop-up ads. They can be distracting for the client, and even potentially risky if a client chooses to pursue information in the advertisement.

Contexts and Environment of the Person
The contexts and environments of the person are essential components of the HAAT model, which specifically identifies physical, social, cultural, and institutional contexts. These contexts can be considered during the initial evaluation to determine the client’s social attitudes toward using an AMD. Cultural priorities for using a device in daily occupations as well as the financial resources available to access the device and the technologies within the device should be considered (Erickson, 2015). Physical and institutional contexts include facility policies that restrict AMD use, or lack of Internet in a facility. The need to restrict certain apps or Internet access when using devices often occurs in schools or other settings with individuals under 18 years old. Virtual context is not specifically included in the HAAT model, although it is included in the Framework and is directly applicable to AMDs.

Each of the contexts discussed here are included in the AOTA (2017) Occupational Profile Template. Questions about environments and contexts that affect or are affected by technology can also be asked when administering tools used to inform the Occupational Profile, such as the COPM (Law et al., 2014).

Other assessments of contexts and environments that are specific to assistive technology can also be used if they are applicable. For example, Mouldovan (2016) provides a form for assessing assistive technology needs in an inpatient rehabilitation setting, and the questions are applicable to a client’s AMD use.

OUTCOMES
Most importantly, occupational therapists should follow up after AMD implementation to determine how the client’s perceived importance of occupations and satisfaction with occupational performance have changed since using the device (Erickson, 2015). The outcomes collected need to go beyond subjective observations of increased engagement while using the device. Increased engagement is important, especially for certain clients; however, it does not provide the support needed for evidence-based practice when using an AMD. The assessments previously mentioned, including occupation-based assessments, provide appropriate outcome measures. The client’s quality of life or subjective well-being to engage in daily life roles may be affected by using AMDs, and these outcomes should also be measured.

CLIENT EDUCATION
The occupational therapist should not be sole proprietor of the process for analyzing AMDs, and should educate the client on considerations for AMDs to improve app literacy when making independent health care decisions. Educating clients about choosing products to manage their own health care and selecting strategies for home programs are important components of occupational therapy. Clients require training and guidance by occupational therapy practitioners to successfully use the AMD for therapeutic outcomes (Gentry et al., 2012). Currently, no sources are available that provide independent, verified reviews of health-related apps by professionals, which would be beneficial to both practitioners and clients. App rating systems can be helpful in determining usability, but they should
not be the primary consideration for implementing an app in practice. These rating systems are often based on the number of downloads, which does not necessarily indicate quality or relevance. Certification programs attempting to review medical and health-related apps (Lewis, 2013) have been limited because of the excessive length of time it takes to review them (Dan, 2014; Misra, 2014). These certification programs, although not directly applicable to occupational therapy practice, provide a starting point for reviewing apps for occupational therapy interventions and for providing client education. Features of the AMD, such as content, privacy, security, and operability (as provided in Table 1 on p. CE-3), should be reviewed with clients so they can make informed decisions when selecting apps to support their health and wellness.

ETHICAL CONSIDERATIONS
Policies related to scope of practice and ethical guidelines should be consulted to determine limitations when using AMDs (AOTA, 2010, 2015). Ethical considerations with emerging technologies such as AMDs entail judicious clinical reasoning, sound judgment, safety awareness, insight, experience, and selecting effective interventions based on available evidence (AOTA, 2015; Johns, 2016).

The availability and portability of AMDs provide many intervention options (Waite, 2012) after the occupational therapist determines that using an AMD with the client is appropriate. Practitioners must consider their own competence in facilitating the use of AMDs in the occupational therapy process; simply because they own a personal AMD does not mean that they have the necessary skills and competencies to successfully use the device as an intervention tool. The complexities of AMDs and their potential use throughout the occupational therapy process require careful consideration. Practitioners should seek training before using AMDs in practice (Gentry et al., 2015). Informally, they can begin by spending time with AMDs and becoming familiar with the accessibility features and functions. Formal continuing education programs that focus on assistive technology and specifically on AMDs are opportunities to gain knowledge in using AMDs in occupational therapy practice.

Although AMDs are widely available and used, practitioners must still consider the safe and accurate use of the devices. The FDA (2015) is beginning to look more closely at apps used for health management and that contain personal health information because it regards them as being used as a medical device. The FDA defines an app as a medical device in three ways: When the app is connected to an external device such as sensors; when the app transmits data from a medical device; and when an app uses an algorithm to diagnose or suggest treatment recommendations. The FDA is beginning this process because of the risks certain apps pose to public health. Although at this time the agency has only produced guidelines that do not provide legal outcomes, occupational therapy practitioners should be aware of new regulations that may affect AMD use in occupational therapy.

The lack of evidence available for AMDs may also pose a risk to the quality and safety of using them in practice (Buijink et al., 2013), particularly when the app is used as a medical device as defined by the FDA. Practitioners should inform clients when they are using interventions that are new and that have limited evidence available to support their effectiveness. Practitioners must rely on clinical experiences and client preferences when using AMD with limited evidence, and they should inform clients of the potentially unknown effects of the intervention.

Conflict of interest may also be a factor if the occupational therapy practitioner has been involved in app development; if they profit financially from the app purchase, they must use caution when prescribing that app to a client and inform the client of the conflict of interest.

SUGGESTED ACTIVITY
Practitioners are encouraged to start an app club, similar to an evidence-based practice journal club, and critically appraise apps based on the information provided in this article. The app club can remain current on the growing body of evidence that explores using AMDs in rehabilitation therapies. Participating in an app club will increase awareness of client needs associated with app use and practitioners’ competency and professional obligations when using AMDs. Participation in an app club also provides practitioners with an opportunity to build on the available evidence to support the interventions provided to clients. Discussions within app clubs should also include outcome measures being used by practitioners. If outcome data can include how frequently AMDs are used as part of interventions, the evidence base to support effectiveness can be further developed.

AOTA provides several resources about using AMDs in practice, including from the Technology Special Interest Section (www.aota.org/Practice/Manage/SIS/SISs/TISIS). The AOTA Annual Conference & Expo provides a full day of technology sessions, including an hour of presentations devoted to sharing apps. The AOTA website also lists apps used in occupational therapy, categorized by practice area (see www.aota.org/apps).

REFERENCES


Final Exam
Article Code CEA0917
App-Based Mobile Devices in the Occupational Therapy Process • September 25, 2017
To receive CE credit, exam must be completed by September 30, 2019
Learning Level: Intermediate
Target Audience: Occupational therapists and occupational therapy assistants
Content Focus: OT Process: Intervention

1. What information should a client have when using an app-based mobile device (AMD) to meet occupational goals?
   A. Previous experience using the device and app
   B. How many people use the app for personal needs
   C. Specific reasons for wanting to use the app
   D. How to assess the source of the information in the app

2. What is necessary for a practitioner to use an AMD in occupational therapy practice?
   A. Practice using the device in personal activities
   B. Developed competency and skills specific to the device
   C. Certification to use the device with clients
   D. Approval of the device by the Federal Drug Administration

3. What related area of evidence should be reviewed when using AMDs in the occupational therapy process?
   A. No evidence is available or applicable to these devices.
   B. Systematic review on the use of apps with mobile devices
   C. Experiences of fellow clinicians using the devices
   D. Studies including personal digital assistants as interventions

4. How should practitioners conduct a follow-up assessment when using AMDs?
   A. Collect outcome measures to determine satisfaction with occupations
   B. Make sure the client can afford to purchase a device for use at home
   C. Assess how the client is using everyday technology with daily routines and occupations
   D. Determine that the client has increased engagement by using the device for longer periods of time

5. Each of the contexts and environments should be assessed in the initial evaluation when considering AMDs except:
   A. Cultural priorities
   B. Social attitudes
   C. Virtual context
   D. Daily routines

6. Which element is important when critically appraising an app for use with clients?
   A. Who recommends using the app
   B. Activity and occupational demands of the app
   C. Which device supports use of the app
   D. Number of downloads for the app

7. AMDs can be considered what type of technology?
   A. Non tech
   B. Low tech
   C. Mid tech
   D. High tech

8. What education should clients receive so they will make good decisions when choosing apps for AMDs on their own?
   A. App-literacy skills
   B. Access skills
   C. How to create passwords
   D. Cost control

9. What is needed when an occupational therapist matches an AMD to a client’s needs?
   A. Reliance on the device’s operating system
   B. Clinical reasoning guided by ethics
   C. Policy guiding device use in practice
   D. Manufacturers’ recommendations for use

10. Which feature of an AMD includes turning the device on and off, launching an app, Wi-Fi requirements, and accessory devices?
    A. Security
    B. Operability
    C. Confidentiality
    D. Content

11. What should be the focus when using AMDs during the occupational therapy process?
    A. The device
    B. The application
    C. The manufacturer
    D. The client

12. What is the primary use of AMDs in occupational therapy?
    A. Intervention
    B. Research
    C. Evaluation
    D. Outcomes